Definizione
Un’equazione di secondo grado o quadratica ad un’incognita
è un’equazione algebrica in cui il grado massimo con cui compare l’incognita è 2, ed è sempre riconducibile alla forma
Processo risolutivo generale
- Operazioni algebriche di base, quali moltiplicazioni, potenze, ecc.
- Ricondurre l’equazione ad una forma del tipo
- Identificare le soluzioni tramite la formula
Attenzione al
- Se
l’equazione ammette due soluzioni reali - Se
l’equazione ammette una sola soluzione reale ( ) - Se
l’equazione non ammette alcuna soluzione reale
Equazioni di secondo grado monomie
Definizione
Diciamo equazione di secondo grado monomia un’equazione di secondo grado in forma normale in cui appare solo il termine di secondo grado
Il metodo di risoluzione è immediato infatti queste equazioni ammettono due soluzioni reali e coincidenti, entrambe nulle
Equazioni di secondo grado pure
Definizione
Diciamo equazione di secondo grado pura un’equazione di secondo grado in forma normale in cui il coefficiente del termine di primo grado è nullo e il termine noto è diverso da zero
Il metodo di risoluzione è molto semplice, infatti per calcolare le due soluzioni possiamo procedere con il seguente calcolo
Attenzione
- Se
e sono concordi, allora è negativo e l’equazione non ammette soluzioni reali - Se
e sono discorsi, allora è positivo e l’equazione ammette due soluzioni reali distinte, date da
Equazioni di secondo grado spurie
Definizione
Diciamo equazione di secondo grado spuria un’equazione di secondo grado in forma normale in cui il coefficiente del termine noto è nullo e il coefficiente del termine di primo grado è diverso da zero
Il metodo di risoluzione è immediato infatti basta effettuare un raccoglimento a fattor comune
Metodo alternativo
Un ulteriore metodo di risoluzione prevede la scomposizione dell’equazione seguendo le tecniche di scomposizione utilizzando anche i prodotti notevoli